Compressing Large Data Sets with Geometry

PIs: Mathieu Desbrun (USC West)

Ronald DeVore (USC East)

Peter Schröder (Cal Tech)

Large Data Sets with Geometry

- Digital Elevation Maps
- Medical Imagery
- Computer Aided Design
- Reverse Engineering
- Steering Large Scale Computation

Surface: Graph of 2d- function

• Server(Encoder) → Client(Decoder)

- Server(Encoder) → Client(Decoder)
- Encoder: $E: S \to B(S) = \{b_1, b_2, \dots, b_n, \dots\}$

- Server(Encoder) → Client(Decoder)
- Encoder: $E: S \to B(S) = \{b_1, b_2, \dots, b_n, \dots\}$
- Client asks for surface

- Server(Encoder) → Client(Decoder)
- Encoder: $E: S \to B(S) = \{b_1, b_2, \dots, b_n, \dots\}$
- Client asks for surface
- $E_n(S) := \{b_1, \dots, b_n\}$

- Server(Encoder) → Client(Decoder)
- Encoder: $E: S \to B(S) = \{b_1, b_2, \dots, b_n, \dots\}$
- Client asks for surface
- $E_n(S) := \{b_1, \dots, b_n\}$
- Decoder: $D_n: B \to S_B$

- Server(Encoder) → Client(Decoder)
- Encoder: $E: S \to B(S) = \{b_1, b_2, \dots, b_n, \dots\}$
- Client asks for surface
- $E_n(S) := \{b_1, \dots, b_n\}$
- Decoder: $D_n: B \to S_B$
- Compressed Surface: $D_n(E_n(S)) := S_B$

- Server(Encoder) → Client(Decoder)
- Encoder: $E: S \to B(S) = \{b_1, b_2, \dots, b_n, \dots\}$
- Client asks for surface
- $E_n(S) := \{b_1, \dots, b_n\}$
- Decoder: $D_n: B \to S_B$
- Compressed Surface: $D_n(E_n(S)) := S_B$
- if resolution is unacceptable client asks for more bits

• Universal: Applies to all S

- Universal: Applies to all S
- Progressive: Receiving more bits gives improved resolution

- Universal: Applies to all S
- Progressive: Receiving more bits gives improved resolution
- Burn In: Client selects subregion; new bits only update chosen region

Burn-In

Coarse Approximation

Progressive Burn-In

Selected region for refinement

- Universal: Applies to all S
- Progressive: Receiving more bits gives improved resolution
- Burn In: Client selects subregion; new bits only update chosen region
- Preserve Geometry and Topology

- Universal: Applies to all S
- Progressive: Receiving more bits gives improved resolution
- Burn In: Client selects subregion; new bits only update chosen region
- Preserve Geometry and Topology
- Optimal: performs at best bit rate?
- Image Encoder: Cohen, Dahmen, Daubechies, De Vore
- Burn In: DeVore, Johnson, Sharpley

How can we evaluate algorithms

• Experimental:

Encoders designed on heuristics

How can we evaluate algorithms

• Experimental:

Encoders designed on heuristics

Precise Mathematical Formulation

Understand rules of game; what it means to be a winner

How can we evaluate algorithms

• Experimental:

Encoders designed on heuristics

Precise Mathematical Formulation

Understand rules of game; what it means to be a winner

- Two essential ingredients
 - a. metric ρ to measure distortion
 - b. Precise definition of classes K_{α} to be compressed

• Distortion: $\rho(S, D_n E_n(S))$

- Distortion: $\rho(S, D_n E_n(S))$
- Evaluate Performance on a set K of surfaces

$$\delta(K; D_n, E_n) := \sup_{S \in K} \rho(S, D_n E_n(S))$$

- Distortion: $\rho(S, D_n E_n(S))$
- Evaluate Performance on a set K of surfaces

$$\delta(K; D_n, E_n) := \sup_{S \in K} \rho(S, D_n E_n(S))$$

• Given bit budget n

$$\delta_n(K) := \inf_{E_n, D_n} \delta(K, D_n E_n(S))$$

- Distortion: $\rho(S, D_n E_n(S))$
- Evaluate Performance on a set K of surfaces

$$\delta(K; D_n, E_n) := \sup_{S \in K} \rho(S, D_n E_n(S))$$

• Given bit budget n

$$\delta_n(K) := \inf_{E_n, D_n} \delta(K, D_n E_n(S))$$

• smallest distortion for the given bit budget

optimal

$$\delta(K, D_n E_n(S)) = \delta_n(K)$$

optimal

$$\delta(K, D_n E_n(S)) = \delta_n(K)$$

near optimal

$$\delta(K, D_n E_n(S)) \le C\delta_n(K)$$

optimal

$$\delta(K, D_n E_n(S)) = \delta_n(K)$$

near optimal

$$\delta(K, D_n E_n(S)) \le C\delta_n(K)$$

• Typically: $\delta_n(K) \approx n^{-s}$ for some s > 0

optimal

$$\delta(K, D_n E_n(S)) = \delta_n(K)$$

near optimal

$$\delta(K, D_n E_n(S)) \le C\delta_n(K)$$

- Typically: $\delta_n(K) \approx n^{-s}$ for some s > 0
- Game: Find encoder/decoder E/D: for all values of n and all classes K_{α} , encoder is near optimal

Optimal Encoding: Kolmogorov Entropy

• Given $\epsilon > 0$

Optimal Encoding: Kolmogorov Entropy

- Given $\epsilon > 0$
- Minimal ϵ cover: $K \subset \bigcup_{i=1}^{N_{\epsilon}} \mathcal{B}(S_i, \epsilon)$

EntropyCoptimal Encoding: Kolmogorov

- Given $\epsilon > 0$
- Minimal ϵ cover: $K \subset \bigcup_{i=1}^{N_{\epsilon}} \mathcal{B}(S_i, \epsilon)$
- Kolmogorov Entropy $H_{\epsilon}(K) := \log_2 N_{\epsilon}(K)$

Covering

Covering

Kolmogorov Entropy

- Given $\epsilon > 0$
- Minimal ϵ cover: $K \subset \bigcup_{i=1}^{N_{\epsilon}} \mathcal{B}(S_i, \epsilon)$
- Kolmogorov Entropy $H_{\epsilon}(K) := \log_2 N_{\epsilon}(K)$

• $\delta_n(K) = \inf\{\epsilon : H_{\epsilon}(K) \le n\}$

EntropyCoptimal Encoding: Kolmogorov

- Given $\epsilon > 0$
- Minimal ϵ cover: $K \subset \bigcup_{i=1}^{N_{\epsilon}} \mathcal{B}(x_i, \epsilon)$
- $\delta_n(K) = \inf\{\epsilon : H_{\epsilon}(K) \le n\}$
- Kolmogorov entropy of K gives our benchmark
- Usually not practical encoder

The Issues

- 1. The metric
- 2. The classes
- 3. Determine Entropy of Classes
- 4. Build near optimal Encoders/Decoders

• L_2 = Least squares not appropriate

- L_2 = Least squares not appropriate
- L_{∞} better

- L_2 = Least squares not appropriate
- L_{∞} better
- Hausdorff better yet

Comparison of Metric

• Offset by a lateral error of ϵ , L^{∞} error may be huge

L^{∞} metric error

Comparison of Metric

- Offset by a lateral error of ϵ , L^{∞} error may be huge
- Hausdorff error is as expected

L^{∞} metric error

Hausdorff metric error

- L_2 = Least squares not appropriate
- L_{∞} better
- Hausdorff better yet
- $d(S, S') := \sup_{x \in S} \operatorname{dist}(x, S')$

- L_2 = Least squares not appropriate
- L_{∞} better
- Hausdorff better yet
- $d(S, S') := \sup_{x \in S} \operatorname{dist}(x, S')$
- $\delta_H(S, S') := d(S, S') + d(S', S)$

Other Possible Metrics

• metrics to incorporate geometry/topology

Other Possible Metrics

- metrics to incorporate geometry/topology
- metrics to incorporate line of sight

• Classical Approach is smoothness spaces - too isotropic

- Classical Approach is smoothness spaces too isotropic
- Classify according to complexity

- Classical Approach is smoothness spaces too isotropic
- Classify according to complexity
- Complexity of Topology

- Classical Approach is smoothness spaces too isotropic
- Classify according to complexity
- Complexity of Topology
- Complexity of Geometry

- Classical Approach is smoothness spaces too isotropic
- Classify according to complexity
- Complexity of Topology
- Complexity of Geometry
- Differential Geometry to play crucial role

• Critical points

- Critical points
- ridge curves

- Critical points
- ridge curves
- drainage curves

- Critical points
- ridge curves
- drainage curves
- level curves

- Critical points
- ridge curves
- drainage curves
- level curves
- plateaus

- Critical points
- ridge curves
- drainage curves
- level curves
- plateaus
- smooth regions

• each curve γ has a smoothness parameter $\alpha(\gamma)$: measures smoothness of γ in certain Besov spaces B^{α} corresponding to L_{∞} (or Hausdorff)

- each curve γ has a smoothness parameter $\alpha(\gamma)$: measures smoothness of γ in certain Besov spaces B^{α} corresponding to L_{∞} (or Hausdorff)
- We know how to do this by results in univariate approximation free knot splines; *n*-term wavelets; optimal encoding

- each curve γ has a smoothness parameter $\alpha(\gamma)$: measures smoothness of γ in certain Besov spaces B^{α} corresponding to L_{∞} (or Hausdorff)
- We know how to do this by results in univariate approximation free knot splines; *n*-term wavelets; optimal encoding
- $\delta_n(U(B^{\alpha})) \leq Cn^{-\alpha}$

- each curve γ has a smoothness parameter $\alpha(\gamma)$: measures smoothness of γ in certain Besov spaces B^{α} corresponding to L_{∞} (or Hausdorff)
- We know how to do this by results in univariate approximation free knot splines; *n*-term wavelets; optimal encoding
- $\delta_n(U(B^{\alpha})) \leq Cn^{-\alpha}$
- Smoothness β between curves: how effectively can we approximate by interpolation

- each curve γ has a smoothness parameter $\alpha(\gamma)$: measures smoothness of γ in certain Besov spaces B^{α} corresponding to L_{∞} (or Hausdorff)
- We know how to do this by results in univariate approximation free knot splines; n-term wavelets; optimal encoding
- $\delta_n(U(B^{\alpha})) \leq Cn^{-\alpha}$
- Smoothness β between curves: how effectively can we approximate by interpolation
- Classify S on basis of behavior of α and β

- each curve γ has a smoothness parameter $\alpha(\gamma)$: measures smoothness of γ in certain Besov spaces B^{α} corresponding to L_{∞} (or Hausdorff)
- We know how to do this by results in univariate approximation free knot splines; *n*-term wavelets; optimal encoding
- $\delta_n(U(B^{\alpha})) \leq Cn^{-\alpha}$
- Smoothness β between curves: how effectively can we approximate by interpolation
- Classify S on basis of behavior of α and β
- Not ready to formulate this

• Albert Cohen, Wolfgang Dahmen, Ingrid Daubechies

- Albert Cohen, Wolfgang Dahmen, Ingrid Daubechies
- $\delta_N(K) \leq C n^{-1}$ for K ball in $C(\Omega)$, $\Omega \subset \mathbb{R}^d$, $N = n^{d-1} \log n$

- Albert Cohen, Wolfgang Dahmen, Ingrid Daubechies
- $\delta_N(K) \leq C n^{-1}$ for K ball in $C(\Omega)$, $\Omega \subset \mathbb{R}^d$, $N = n^{d-1} \log n$
- $\delta_n(K) \leq Cn^{-1}$ for K ball in BV(Ω), $\Omega \subset \mathbb{R}$

- Albert Cohen, Wolfgang Dahmen, Ingrid Daubechies
- $\delta_N(K) \leq C n^{-1}$ for K ball in $C(\Omega)$, $\Omega \subset \mathbb{R}^d$, $N = n^{d-1} \log n$
- $\delta_n(K) \leq Cn^{-1}$ for K ball in $BV(\Omega)$, $\Omega \subset \mathbb{R}$
- $\delta_n(K) \leq C n^{-2}$ for K class of continuous convex in d=1.

box dimension

box dimension

• Extract critical points and curves capturing geometry and topology (wire mesh)

- Extract critical points and curves capturing geometry and topology (wire mesh)
- Prioritize these curves

- Extract critical points and curves capturing geometry and topology (wire mesh)
- Prioritize these curves
- Select a few highest priority curves

- Extract critical points and curves capturing geometry and topology (wire mesh)
- Prioritize these curves
- Select a few highest priority curves
- first bits for these selected curves (first wire mesh)

- Extract critical points and curves capturing geometry and topology (wire mesh)
- Prioritize these curves
- Select a few highest priority curves
- first bits for these selected curves (first wire mesh)
- choose additional next priority curves

- Extract critical points and curves capturing geometry and topology (wire mesh)
- Prioritize these curves
- Select a few highest priority curves
- first bits for these selected curves (first wire mesh)
- choose additional next priority curves
- predict these curves from first wire mesh: generate smooth surface to first wire mesh

- Extract critical points and curves capturing geometry and topology (wire mesh)
- Prioritize these curves
- Select a few highest priority curves
- first bits for these selected curves (first wire mesh)
- choose additional next priority curves
- predict these curves from first wire mesh: generate smooth surface to first wire mesh
- update bits for all selected curves (second wire mesh)

- Extract critical points and curves capturing geometry and topology (wire mesh)
- Prioritize these curves
- Select a few highest priority curves
- first bits for these selected curves (first wire mesh)
- choose additional next priority curves
- predict these curves from first wire mesh: generate smooth surface to first wire mesh
- update bits for all selected curves (second wire mesh)
- continue

Morse structure and keep graphs

Original terrain

Three Hills

Morse structure and Keeb graphs

Select critical points

Three Hills

- Local Min/Max
- Saddle Points

Morse structure and keep graphs

Represent as graph

Morse structure and keep graphs

Edge represents monotone region

Morse structure and Keeb graphs

Edge represents monotone region

Morse structure and keep graphs

Edge represents monotone region

Morse structure and Keeb graphs

monotone region is a washer

morse structure and keep graphs

ground reference

Three Hills

- Local Min/Max
- Saddle Points

Morse Structure

Morse structure and graphs

Each saddle point gives level curve

Keeb

Morse structure and Keeb graphs

prioritize by assigning weights

Morse structure and keep graphs

Definition of weight

Morse structure and keep graphs

removing low priority sections

Add Geometry

• Morse structure captures topology

Add Geometry

- Morse structure captures topology
- Use curvature (shape operator) to select and priortize geometry

Add Geometry

- Morse structure captures topology
- Use curvature (shape operator) to select and priortize geometry
- embed geometry into graph

• multiscale methods (CAGD subdivision) using piecewise polynomials

- multiscale methods (CAGD subdivision) using piecewise polynomials
- interpolatory

- multiscale methods (CAGD subdivision) using piecewise polynomials
- interpolatory
- shape preserving: monotonicity, convexity, etc

- multiscale methods (CAGD subdivision) using piecewise polynomials
- interpolatory
- shape preserving: monotonicity, convexity, etc
- optimal encoder for many classes (Besov balls):

$$\delta_n(K_\alpha) \approx n^{-\alpha}, \quad K_\alpha := U(B^\alpha(L_\tau))$$

- multiscale methods (CAGD subdivision) using piecewise polynomials
- interpolatory
- shape preserving: monotonicity, convexity, etc
- optimal encoder for many classes (Besov balls):

$$\delta_n(K_\alpha) \approx n^{-\alpha}, \quad K_\alpha := U(B^\alpha(L_\tau))$$

• K_1 includes all curves with finite arc length

- multiscale methods (CAGD subdivision) using piecewise polynomials
- interpolatory
- shape preserving: monotonicity, convexity, etc
- optimal encoder for many classes (Besov balls):

$$\delta_n(K_\alpha) \approx n^{-\alpha}, \quad K_\alpha := U(B^\alpha(L_\tau))$$

- K_1 includes all curves with finite arc length
- K_2 includes all convex curves

Simplest case - piecewise linear

Example: Level Curve Approximation

• classify surfaces

- classify surfaces
- determine Kolmogorov Entropy of these classes

- classify surfaces
- determine Kolmogorov Entropy of these classes
- encode geometry

- classify surfaces
- determine Kolmogorov Entropy of these classes
- encode geometry
- Burn In

- classify surfaces
- determine Kolmogorov Entropy of these classes
- encode geometry
- Burn In
- Other Metrics

• inpainting (nonlinear evolution equations)

- inpainting (nonlinear evolution equations)
- constrained minimization

- inpainting (nonlinear evolution equations)
- constrained minimization
- interpolation

- inpainting (nonlinear evolution equations)
- constrained minimization
- interpolation
- constrained Delaunay

References

- A. Solé, V. Caselles, G. Sapiro, F. Arándiga, "Morse Description and Geometric Encoding of Digital Elevation maps," preprint.
- H. Carr, J. Snoeink, U. Axen, "Computing contour trees in all dimensions, Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, 918-926 (San Francisco, January 9 -11, 2000).
- A. López, F. Lumbreras, J. Serrat, J. Villanueva, "Evaluation of Methods for Ridge and Valley Detection," IEEE Trans. Pattern Analysis and Machine Intelligence, **21**.4 (1999), 327–335.
- M. McAllister and J. Snoeyink, "Extracting consistent watersheds form digital river and elevation data," 1999 ASPRS Annual Conference.
- H. Edelsbrunner, J. Harer, A. Zomorodian, "Hierarchical Morse complexes for piecewise linear 2-manifolds," *SCG'01*, June 3-5, 2001, Medford, MA.

References (cont.)

- A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore, Tree approximation and optimal encoding, ACHA **11**(2001), 192–226.
- R. DeVore, B. Jawerth, and B. Lucier Image compression through wavelet transform coding, IEEE Transaction on Information Theory **38**(1992), 719–746.
- R. DeVore, B. Jawerth, and V. Popov, Compression of wavelet decompositions, American Journal of Mathematics **114**(1992), 737–785.
- R. DeVore, L.S. Johnson, C. Pan, and R. Sharpley, Optimal entropy encoders for mining multiply resolved data, in "Data Mining II", N. Ebecken and C.A. Brebbia (eds.), WIT Press, Boston, 2000, pp. 73–82.
- M. Meyer, M. Desbrun, P. Schröder, A.H. Barr, "Discrete differential geometry operators for triangulated 2-manifolds, preprint.
- B. Sendov, *Hausdorff Approximations*, Kluwer Academic Publishers Group, Dordrecht, 1990, pp. 364.